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Abstract
The standard point of view is that at low energies Mott insulators exhibit only magnetic
properties, while charge degrees of freedom are frozen out because electrons are localized. We
demonstrate (Bulaevskii et al 2008 Phys. Rev. B 78 024402) that in general this is not true: for
certain spin textures there exist quite nontrivial charge effects in the ground and lowest excited
states. We show that in frustrated systems spontaneous orbital currents may exist in the ground
state, proportional to the scalar spin chirality. For other spin structures spontaneous charge
redistribution may exist, so that the average charge at a site is different from 1. This can lead to
the appearance of dipole moments and possibly of the net spontaneous polarization. This is a
novel, purely electronic mechanism of multiferroic behaviour. We also discuss some dynamic
consequences, such as dipole-active ‘ESR’ transitions. Also, the possibility of using chirality
instead of spin in memory applications is briefly discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The standard way to consider Mott insulators with strong
correlations (on-site Hubbard repulsion U � hopping integral
t) and with one electron per site is to say that due to electron
repulsion electrons are localized, one at a site, and the system
becomes insulating. In this case one always accepts that charge
degrees of freedom are frozen out and only spin degrees of
freedom remain, which determine the magnetic properties of
such systems. Correspondingly, if one describes this situation
by the simplest model—the nondegenerate Hubbard model

H = −
∑

i jσ

ti j c
†
iσ c jσ + U

∑

i

ni↑ni↓, (1)

for one electron per site 〈ni 〉 = 〈c†
i↑ci↑ + c†

i↓ci↓〉 = 1 and for
U/t � 1 one can go over from the electron Hamiltonian (1) to
the effective spin model

Heff = 4t2

U

∑
Si · S j . (2)

* The paper is based on an invited talk at the International Conference on
Magnetism, Karlsruhe, 2009.

Thus one always implicitly assumes that for strong Mott
insulators charge degrees of freedom are of no interest,
the ground state and the lowest excited state are purely
magnetic, and charge excitations and charge response start
from temperatures T or energies E � U .

We recently considered [1] this situation for frustrated
lattices (with triangular, tetrahedral or pentagonal building
blocks), and demonstrated that this general point of view is
not correct for these systems: there may exist quite interesting
charge effects even in the ground state and lowest excited
states of such systems. In particular, it was shown in [1]
that for certain spin textures spontaneous orbital currents may
appear in such systems, reminiscent of the persistence currents
in superconductors with trapped magnetic flux. For other
spin textures spontaneous charge redistribution or spin-driven
charge density waves (S-CDWs) should occur, so that the
number of electrons at a particular site is not 1, but more than
1 at certain sites and less than 1 at others. As a result electric
dipole moments will appear in the system, which in some cases
can give rise to net polarization, i.e. to ferroelectricity. This
could be a novel, purely electronic mechanism of multiferroic
behaviour (magnetically driven, or type-II multiferroic [2]),
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Figure 1. (a) Virtual hoppings of electrons on a pair of sites, giving
superexchange (2) ∼t2. (b) Possibility of current state in a triangle,
requiring three electron hops (the effect ∼t3).

which in principle would require neither spiral magnetic
structures nor electron–lattice (magnetostriction) interaction.
As a result of strong mixing of charge and spin degrees
of freedom, low-energy magnetic excitations, such as the
usual spin waves, acquire electric activity and contribute
not only to the magnetic response χ(q, ω) but also to the
electric response function—the dielectric function ε(q, ω) (see
also [3]). Thus there should be different manifestations of spins
in optical properties: dipole-active ‘ESR’-like transitions, etc,
will appear.

We stress right away that all these effects appear without
the involvement of relativistic spin–orbit interaction, which can
also lead to similar effects and which is now actively studied
in the field of spintronics, especially in semiconductors [4].
On the other hand, the effects we discuss require the presence
of geometric frustration in the form of odd-segment loops on
which electrons can hop.

In this paper I will discuss the main ideas underlying this
development; I will briefly summarize the results obtained
in [1] (one can find the details in the original publication),
and will discuss possible implications and some recent
developments.

As I have said above, the standard paradigm in Mott
insulators is to consider electrons as localized exactly one
per site, and go over from the electronic Hamiltonian (1)
to the effective Heisenberg Hamiltonian (2) describing only
spin degrees of freedom. This is done by using perturbation
theory in t/U � 1 up to the second order. But more
attentive reasoning immediately shows that already at this level
the electrons do not stay forever at their sites. To get the
(super)exchange interaction (2) they have to virtually move
from site to site, hopping to nearest neighbours and back
(figure 1(a)). In second order in t/U (two hops) this gives
a preference to antiparallel orientation of neighbouring spins
(the Pauli principle does not forbid such hops, in contrast
to their parallel arrangement) and provides a mechanism of
antiferromagnetic superexchange (2). Thus without such
hopping of electrons from site to site there would be no
magnetic exchange at all!

Similar reasoning applied, for example, to the triangle
{123} in figure 1(b) immediately gives a hint that similar
hoppings in this case can lead to circular currents running
clockwise or anticlockwise along this triangular loop. Similar
to the case of figure 1(a), one can expect that the very presence
and magnitude of these currents would depend on the magnetic
structure on this triangle, i.e. on some correlation functions
involving spins S1, S2, S3. But, in contrast to the usual
superexchange, here the electrons should hop (at least) three

times, i.e. one can find these effects in the third order, ∼t3, in
contrast to the second order ∼t2 in figure 1(a) and in (2).

This is essentially what was done in the original paper [1].
There we calculated different effects up to the order (t/U)3,
and found corresponding expressions for spontaneous current,
charge density etc. Technically this can be done in two ways:
we can calculate particular quantities, such as the current

Ii j = ieti jri j

h̄ri j

∑

σ

(c†
jσ ciσ − c†

iσ c jσ ), (3)

or the electron density

ni = c†
i↑ci↑ + c†

i↓ci↓ (4)

for sites i , j belonging to the triangle {i jk} up to the 3d order
in t , and express the results via spin operators1. Alternatively,
we can calculate the effective Hamiltonian Heff up to order t3,
adding to the original Hamiltonian (1) the coupling to a scalar
potential φ(r) = −e

∑
i φi ni and to a vector potential A(r),

introduced via the Peierls substitution ti j −→ ti j e
− 2π i

�0

∫ x j
xi

dx·A.
From the resulting expression for Heff{A, φ} we can then
obtain the electron density ni = −∂ Heff/∂(eφi) and the current
in the triangle Ii jk = −c∂ Heff/∂�i jk , where �i jk = ∮

i jk dx·A
is the magnetic flux through the triangle. Both methods give
identical results [1], presented below.

2. Spontaneous currents and orbital moments

The expression for the current running on a bond {12}
belonging to a triangle {123} (by continuity, this will be net
current running along the whole triangle {123}) is

I12,3 = r12

r12

24et3

h̄U 2
S1 · [S2 × S3] = r12

r12

24et3

h̄U 2
χ123 (5)

where χ123 is the scalar spin chirality, χ123 = S1 ·[S2 ×S3] =
S2 ·[S3 ×S1] = S3 ·[S1 ×S2]. Thus we see that as soon as the
scalar spin chirality χ123 has nonzero average, there should be
a real circular electric current running along this triangle. This
current will cause a corresponding orbital moment, always
directed perpendicular to the plane of the triangle, Lz ∼ I ∼
χ . Thus this orbital moment is an Ising variable, in contrast to
the usual spins which are SU(2)-invariant. Consequently, for
example, whereas in 1d and 2d systems at T 
= 0, according to
the Mermin–Wagner theorem, there should be no long-range

1 We recall that in the case of strong Mott insulators n = 1, t/U � 1, all
the lowest excited states belong to the Hilbert space of 2N nonpolar states. In
this subspace one can always go over from the electron operators c†, c to spin
operators S, using the well known rules c†

i↑ci↑ −→ 1
2 +Sz

i , c†
i↓ci↓ −→ 1

2 −Sz
i ,

c†
i↑ci↓ −→ S+

i , c†
i↓ci↑ −→ S−

i . Accordingly the second order in t/U terms,
like those necessary to go from the Hamiltonian (1) to (2), would contain
products of four electronic operators, which combine into the Heisenberg
exchange Si · S j (2). Similarly, third-order terms would contain products
of six electronic operators, which would give some combinations of three spin
operators Si , S j and Sk . Note that in principle all operators, including spin
operators themselves, would also be renormalized by terms of higher order
in (t/U) [5]. It would not, however, modify our main results such as the
expressions for electric current (5) or charge redistribution (6), because the
extra terms in spin operators would give terms in (5) and (6) of higher order
in (t/U).
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Figure 2. Schematic change with magnetic field of the total spin of a
triangle (solid line) and of the orbital moment following from
equation (5) (dashed line); for the opposite sign of the hopping t the
dashed curve would be inverted.

spin ordering, 〈Si 〉 = 0, this does not apply to the orbital
moment, i.e. to scalar spin chirality: there may be in principle
situations in which 〈S〉 = 0, but in which the scalar spin
chirality (a third-order spin correlation function) and orbital
moments proportional to it are nonzero, 〈χ〉 ∼ 〈Lz〉 
= 0,
even at finite temperatures. One such example was considered
in [6], where this was shown to be the case for a certain
range of parameters in a kagome lattice with nearest and next
nearest neighbour interactions. Note that this state with 〈χ〉 =
〈S1 · [S2 × S3]〉 
= 0 is a magnetic state, and breaks time
reversal invariance. Nevertheless it does not have the usual
long-range magnetic order, i.e. it is an example of a time-
reversal-broken spin liquid.

The result (5) discloses the physical meaning of the scalar
spin chirality, which has been invoked in many situations. Our
results show that physically nonzero scalar chirality means the
presence of real electric orbital currents and corresponding
orbital moments. Thus this chirality will have a linear coupling
to the magnetic field ∼−Lz Hz ∼ χ123 Hz, and in some cases
it can be the primary order parameter (coupling of scalar spin
chirality to the magnetic field was also noticed in [7]).

A few more remarks are in place here. First, we see that
the current (5) and the orbital moment Lz are odd functions
of t . Thus they may have a different sign, depending on the
sign of t . Scalar spin chirality χ123 is in fact a measure of
the solid angle created by three spins S1, S2, S3 (for small
solid angle), and quasiclassically 〈χ〉 
= 0 when spins are
noncoplanar. In this case there will be a net total spin of the
triangle 〈Stot〉 = 〈S1 + S2 + S3〉 
= 0, and the orbital moment
Lz will change with Stot. But this change can be nontrivial.
Thus, for example, if there exists an easy-plane anisotropy,
e.g. coinciding with the plane of the triangle, a perpendicular
magnetic field will ‘bend’ spins, originally forming a 120◦
structure in the plane. The total spin of the triangle will
then behave as shown in figure 2 by the solid line. But the
currents and orbital moments, according to equation (5), will
first increase but then, when the spins finally become collinear,
they will decrease (figure 2 (dashed line)). Moreover, for the
opposite sign of hopping t in (5) the orbital moment Lz will
be negative, i.e. opposite to the spin moment 〈Stot〉 (but still
nonmonotonous).

However, in general, spin orientation should not be tied to
the orientation of the triangle. Thus, for example, if the spin
easy plane is perpendicular to the plane of the triangle, with
120◦ spin orientations in this easy plane, then it will be the
field H‖, lying in the plane of the triangle, which will ‘bend’
spins and create nonzero chirality 〈χ〉. But the orbital moment,

created by this, will still be in the z-direction, i.e. the field H‖
will create an orbital moment perpendicular to it.

Another important remark is that a posteriori, after
equation (5) has been derived, we can understand that this
expression is the only possible expression for the current
through spin operators. Its form is actually determined by
symmetry requirements. Thus, current is odd with respect to
time reversal, i.e. it has to contain an odd number of spins—
in 3d order in t/U three spins2. Similarly, the requirement of
the proper symmetry with respect to spatial inversion, mirror
plane reflections etc uniquely determines the spin combination
S1 · [S2 × S3] entering (5). Of course to get numerical
coefficients in the expression (5), one has to carry out real
calculations [1].

From these arguments it is also clear why for all
phenomena such as spontaneous currents we need frustrations.
For n = 1 the system is invariant with respect to electron–
hole transformation. But in such transformation, on the one
hand, t −→ −t , and, on the other hand, electron–hole
substitution changes the sign of the current, j −→ − j . Thus
the expression for current should contain only odd powers
of t . But this requires having odd closed loops such as
triangles, pentagons etc (or a square lattice with diagonal
hoppings added, which also allows for three-segment loops).
For bipartite lattices, however, with only even loops, there
should be no spontaneous currents.

The calculations presented above were carried out in
perturbation theory in t/U � 1. Consequently one might
think that all effects discussed above, though in principle
present, will be numerically very small. This is indeed
the case if t/U � 1. But, as argued above, the effects
such as spontaneous currents should be present even when t
becomes large. Thus there will be the same currents when
the system approaches Mott transition from the insulating
side. Corresponding currents will still be proportional to the
same scalar spin chirality χ , but numerically the effects would
be stronger—generally speaking of order one. Actually the
solution of the Hubbard model on a triangle can be obtained
exactly for all values of t/U [8], and estimates made in [8]
show that for small U the values of the orbital moment due
to currents of the type of (5) can for reasonable values of
parameters be ∼0.7 μB—not a small value at all.

Until now we have considered only isolated triangles,
often using the quasiclassical approximation (though in general
the result (5) has an operator form, i.e. it has a general
applicability; see below). There indeed exist real systems
which to a good approximation can be considered as consisting
of isolated triangles. Examples are many magnetic molecules
or trinuclear clusters, or even some solids. But more
often in concentrated systems we meet the situation where
constituting triangles have common edges (e.g. ‘triangular
ladders’, figure 3(a), or triangular lattices, figure 3(b)), or
common vertices (e.g. kagome lattices, figures 3(c) and (d)). If
for such systems we were to have the same chirality χ at each
triangle, as in figure 3(a), we see that the currents on common
inner edges would cancel. But then there will exist a net

2 Note also that for systems containing spin triangles there will appear three-
spin terms (ring exchange) ∼t3/U2 in the effective Hamiltonian (2).
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Figure 3. Possible currents on different frustrated lattices for
different spin configurations. Large arrows denote spins, small
arrows on the edges show the direction of electric currents.
(a) Current running on the perimeter of the sample (here—‘triangular
ladder’) with the same chirality at each edge-sharing triangle.
(b) Staggered chiralities in a triangular lattice with 120◦ magnetic
structure (scalar spin chirality will appear in a weak perpendicular
field). (c) Homogeneous (q = 0) and staggered (d) chiralities for two
typical states in a kagome lattice.

current running on the perimeter of the whole sample—much
like persistence currents on the surface of superconductors. In
this case there will be a nonzero total orbital moment of the
whole sample.

If, however, we have the usual 120◦ coplanar spin structure
(figure 3(b)) this would give for a triangular lattice a staggered
vector chirality S1 × S2 + S2 × S3 + S3 × S1. Spin
‘bending’ in a perpendicular magnetic field will then create
a similar pattern of scalar spin chirality and corresponding
alternating clockwise and anticlockwise currents, which, as
one sees in figure 3(b), will exist on both the inner and outer
bonds, creating regular pattern but not adding to a net orbital
moment. However, we notice an interesting feature here: in
this case the constant magnetic field will create staggered field
for orbital moments [9]. Similarly, for the kagome lattice the
patterns of figures 3(c) and (d), both being 120◦-structures,
would give different results for chiralities and orbital moments:
homogeneous (q = 0) or staggered (

√
3 × √

3) structures.
Both situations have been seen in experiments in different
situations. Note that if the structures of figures 3(c) and (d)
were exactly equivalent (degenerate), then the application of
a magnetic field perpendicular to the easy plane would lift
this degeneracy—not because of spins (spin canting would be
the same), but because of orbital moments: the total orbital
moment Lz would be nonzero for the q = 0 structure of
figure 3(c), but moments would cancel in the staggered case
of figure 3(d). Which phase will then be stabilized by the
external field depends on the value and the sign of the orbital
moment. (Note that we have to take into account not only the
moments of each small triangle, but also the opposite moments

Figure 4. Typical classical magnetic states on a tetrahedron with the
Ising-like magnetic anisotropy (spins pointing toward the center of
tetraherdon or out of it), with the resulting currents. (a) 4-in (or
4-out) state; currents at each edge cancel. (b) 3-in, 1-out state (e.g. in
a strong enough magnetic field pointing out). (c) 2-in, 2-out state (the
state typical for the ‘spin ice’). Cases (b) and (c) have nonzero
currents and orbital moments. Notation for arrows is the same as in
figure 3.

of currents running in opposite directions around the hexagons
in figure 3(c).)

One meets an interesting situation in systems containing
metal tetrahedra (isolated ones or forming pyrochlore lattices,
for example) as building blocks. Often in this case we
have strong uniaxial anisotropy such that the spins point
towards the centre of the tetrahedron or away from it. The
resulting structure can, for example, be ‘four in’ (or ‘four out’)
(figure 4(a)). In a strong enough magnetic field, pointing
up it will transform to the ‘three in—one out’ structure of
figure 4(b). More familiar is the case of ‘two in—two out’
(figure 4(c))—the famous spin ice. Applying the expression (5)
to these situations, we see that at each separate triangle we have
noncoplanar spins with 〈χ〉 
= 0, and consequently nonzero
currents. However, in the case figure 4(a) the currents at each
edge, belonging to two triangles, cancel. But similar treatment
of the cases 4(b) and (c) shows that there will be nonzero
currents running as shown there, with corresponding orbital
moments parallel (or antiparallel) to the net spin moment of
the tetrahedron.

The actual situation, however, is more complicated.
The antiferromagnetic Heisenberg model for spins 1

2 on a
tetrahedron can be solved exactly, and the ground state of
course is a singlet, Stot = 0, but it is doubly degenerate
(see e.g. [10]). This degeneracy is nothing other than the
chirality χ123 = χ134 = χ142 = χ432 (see vertex numbering
in figure 4(a)), or at least we can choose the basis states in
a doubly degenerate ground state manifold so that they are
eigenstates of this chirality. Corresponding states in which
〈χ〉 
= 0 break time reversal invariance and are magnetic.
Nevertheless the average spin 〈S〉 = 0, and there is also no
net orbital moment here (similar to the case of figure 4(a),
the currents at each edge cancel). One can also argue
that due to symmetry the orbital moment (a vector) should
indeed vanish—it ‘would not know’ in which direction in a
tetrahedron to point. But, on the other hand, such states, with
e.g. 〈S1 · [S2 × S3]〉 
= 0, are T-odd and are magnetic!

One can give arguments that what will be nonzero here
is not the orbital moment (magnetic dipole) but the magnetic
octupole (or it may be even the magnetic monopole [11]).
Indeed the symmetry analysis shows that the situation

4
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Figure 5. Schematic explanation of charge redistribution and
formation of dipole moments in a triangle. (a) Typical classical
situation. (b) Possible quantum state of a triangle. The blue oval is a
singlet state of spins S2 and S3, spin S1 pointing up or down. Here the
black thin arrows are spins and thick red arrows are dipole moments.

here, with doubly degenerate states, corresponds to the Eg-
representation of the rotation group, i.e. it is in fact equivalent
to the Eg degeneracy in the Jahn–Teller problem (i.e. doubly
degenerate eg orbitals |3z2–r 2〉, |x2–y2〉 in transition metal
compounds; see e.g. [12]). As in that problem, one can
describe this degeneracy by effective pseudospin (or isospin)
τ = 1

2 . One can then choose the states to be real (eigenstates of
τ z , τ x ) or one can choose complex combinations (eigenstates
of τ y). The first two are even with respect to time reversal,
whereas the last ones, eigenstates of τ y , are odd. And, similar
to the case of eg-orbitals, complex combinations, which are
actually characterized by certain scalar chirality, τ y ∼ χ ,
correspond to states with magnetic octupoles [13].

3. Charge redistribution and polarization

Similar to the treatment of currents on a triangle, we can also
calculate the effective electron density (an operator!). The
resulting expression for the charge on site 1 belonging to
triangle {123} is [1]

n1 = 1 + 8
t3

U 3
[S1 · (S2 + S3) − 2S2 ·S3]. (6)

Thus we see that if the average correlation function 〈S1 ·
(S2 + S3) − 2S2 · S3〉 
= 0, the electron density at site 1
will be different from 1: it will be either more or less than 1
depending on the spin configuration (and the sign of t). Thus
a certain charge redistribution will occur, with corresponding
appearance of a S-CDW, and of corresponding dipole moment.

One can qualitatively explain this result in the simple
picture of figure 5. In figure 5(a) a possible spin structure is
shown. It is clear that in this case even in the lowest order
in t the electrons can hop between sites (1, 2) and (1, 3), but
because of the Pauli principle not between 2 and 3. Thus the
bonds here are definitely inequivalent ‘from the charge point
of view’. And this is translated to the fact that also site charge
densities become different, as described by equation (6).

In figure 5(b) we present a more realistic picture for
a triangle of spins 1

2 with the Heisenberg antiferromagnetic
interaction. The ground state of this system may be written
as a superposition of states of the type shown in figure 5(b): a
singlet on one bond, with spin up (or down) on the remaining
site. The ground states (doubly degenerate, see below) are
usually taken as a symmetric superposition of such states with

singlets on all three bonds. But we can also choose a different
basis, e.g. with one state shown in figure 5(b), and another
orthogonal state.

In this state, according to equation (6), we also have
charge redistribution (S1 + S2 = 0, S1 · S2 = − 3

4 ). This
charge redistribution will lead to the formation on the triangle
of the corresponding electric dipole moment, e.g. pointing
up (red arrow in figure 5). The orthogonal state will have
dipole moment down. Thus by applying a small electric
field in the appropriate direction, we will split the originally
degenerate ground state in such a way that one state, e.g. that
of figure 5(b), would go down in energy, and the orthogonal
state up. This is completely analogous to the Zeeman splitting
of spin up and down states in a magnetic field, and it justifies
the possibility of choosing the state of figure 5(b) as one of
the basis states. Without an electric field of course all such
states are degenerate, and there will be no electric dipole, again
exactly analogous to the case of a spin in a paramagnet.

If in a bulk system the dipole moments of all triangles were
to have some nonzero value, this would correspond to total
electric polarization, i.e. to the appearance of magnetically
driven ferroelectricity. This would then be a purely electronic
mechanism of multiferroic behaviour—type-II multiferroic,
in the terminology of [2]. In many cases, however, such
dipole moments on different triangles cancel. This is the
typical situation in many magnetization plateaux, typical of
frustrated systems. Thus the 1

3 magnetization plateau in a
kagome lattice has the structure shown in figure 6(a) [14],
i.e. it consists of singlet hexagons, with up-spins in between.
One sees that each elementary triangle in this case has a
structure like in figure 5(b), i.e. it has a singlet base and spin
up vertex. Correspondingly there will be charge redistribution,
with charges of magnetic sites different from those on singlet
hexagons. But the dipole moments thus created would cancel
and would not add up to a net polarization. Nevertheless there
will be this charge redistribution (formation of S-CDWs) on the
magnetization plateau. This seem to be a typical situation at
such plateaux: besides unusual magnetic behaviour, we would
have here nontrivial charge effects.

In the same way the typical state of a diamond chain of
figure 6(b) (found in the mineral azurite) would have charge
redistribution, but dipole moments which cancel. However, for
example, the similar state on a saw-tooth (or delta-) chain of
figure 6(c) would give a nonzero net polarization. I know of
only one material with this structure—(La/Y)CuO2.5+x [15].
Also the properties of domain walls (solitons) in these chains,
shown in figure 6(d), might be very interesting: besides having
nonzero spin (e.g. S = 1

2 ) they should also be charged.
We stress again that this mechanism of magnetoelectric

coupling, and of eventual multiferroicity, is purely electronic
and does not require a spiral magnetic structure or relativistic
spin–orbit interaction, as usual [2]: it can also work for a
collinear magnetic structure. On the other hand it also does
not require lattice distortion (magnetostriction), though the
inclusion of this possibility leads to effects similar to those
described above [1].

5
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Figure 6. Charge redistribution and appearance of dipole moments in different situations. (a) Typical state of a kagome lattice at the 1/3
magnetization plateau which would be accompanied by spin-driven CDW. (b), (c) Dipole moments respectively in a diamond chain and in a
saw-tooth (or delta-) chain. Figure (d) illustrates the appearence of a charged soliton on a domain wall in a saw-tooth chain. Notations are the
same as in figure 5.

4. Currents or dipoles? Dynamic effects

We discussed above two possible nontrivial states of frustrated
systems: the state with spontaneous orbital currents in the
ground state and the state with charge redistribution and
with dipole moments. According to equations (5) and (6)
the choice of one or the other state is determined by the
spin texture, characterized by corresponding spin correlation
functions. If we have an ordered state, equations (5) and (6)
tell us what would be the charge properties of corresponding
states. However, in a quantum-mechanical treatment of an
isolated triangle, for example, there should be no spontaneous
breaking of any symmetry, but the ground state can be (and is)
degenerate. Then we can choose a particular combination of
the degenerate ground states such that the resulting state chosen
would have one or the other nonzero average (we stress that it
is true for one particular state). We already briefly discussed
this above, and now we do so in more detail.

The solution for a triangle of spins 1
2 with Heisenberg

antiferromagnetic interaction is well known. The 23 = 8
possible states are split into an upper quartet Stot = 3

2 , and the
remaining four states belong to the ground state quartet with
Stot = 1

2 and with an extra double degeneracy, which is nothing
other than the degenerate chirality χ = ±1. At least one can
choose the corresponding basis states so that they would be
eigenstates of chirality:

|χ = ±1,↑〉 = + 1√
3
(↓↑↑ +e2πχ i/3 ↑↓↑ +e4πχ i/3 ↑↑↓)

|χ = ±1,↓〉 = − 1√
3
(↑↓↓ +e2πχ i/3 ↓↑↓ +e4πχ i/3 ↓↓↑).

(7)
But equally well we can choose as basis states of a triangle
linear combinations of these states, such that these linear
combinations would be real and T-even. And these states can
be characterized by nonzero values of dipole moments.

There is an interesting and useful relation between these
states and the operators describing them. We have the

Figure 7. Possible directions of dipole moments, or electric
polarization, for a triangle, see equation (8).

expression (5) for the current through the three-spin correlation
function. Similarly, equation (6) gives the expression for the
dipole moment from the middle of one edge to the opposite
vertex (dx in figure 7). But there is yet one more possibility:
the state with a dipole moment in the y-direction (figure 7).
The expressions for dx and dy are

dx = 4
√

3ea

(
t

U

)3

[S1 · (S2 + S3) − 2S2 ·S3],

dy = 12ea

(
t

U

)3

S1 · (S2 − S3).

(8)

The first one is in fact equation (6), and the second can be
obtained analogously. From equations (5) and (8) one can
check that three operators, dx , dy and I , can be combined into
one pseudospin T = 1

2 :

dx = −CT x , dy = CT y,
h̄a

U
I = CT z (9)

where C = 12
√

3ea(t/U)3. This also follows from the fact
that doubly degenerate chirality states again, as was discussed
above in treating the case of tetrahedra, belong to the Eg

representation. One can choose the states to be eigenstates of
current and chirality: in our notation the states with T z = ± 1

2
are complex and magnetic. Or we can choose real states—
eigenstates of dx ∼ T x or dy ∼ T y , which would be the

6
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Figure 8. Schematic explanation of an ordinary ESR (thin blue
arrows) and of a novel electric-induced dipole-allowed transitions
(thick red arrows) in an external magnetic field (case (a), the usual
ESR) and in an external electric field, case (b).

states with charge redistribution and with corresponding dipole
moments. Thus for a triangle the complex states with currents
correspond to magnetic dipoles (nonzero orbital moments),
and real combinations—to electric dipoles. As we have argued
above, for tetrahedra the corresponding complex states would
give magnetic octupoles, and by analogy with Jahn–Teller
systems (eg electrons [12]) the real states (eigenstates of T x

and T y) would give electric quadrupoles (one can easily check
this directly from the exact solution for tetrahedra [10]).

One very important consequence is immediately seen from
this. If we take states with definite chirality, i.e. eigenstates
of T z with |T z = ± 1

2 〉, operators T x and T y will have
nondiagonal matrix elements in this basis. But T x and T y are
dipole moments! This means that 〈T z = 1

2 |d| T z = − 1
2 〉 
= 0,

or that there will be dipole-allowed transitions between states
with opposite chirality, 〈χ = + |d · E| χ = −〉 
= 0. This was
also noticed recently in [16].

This result immediately leads to many consequences.
Thus because of that the low-lying magnetic states in this
case would contribute not only to the magnetic susceptibility
χ(q, ω), but also to the electric response function ε(q, ω). The
fact that the same excitations contribute to both χ and ε leads
to the existence of common poles in them, and close to these
poles we would have a situation with both of them negative.
This is the condition for having negative refraction, i.e. these
system can be good candidates for metamaterials (of course
the question of dissipation, or imaginary parts of χ and ε,
remains).

One very spectacular and easy to understand consequence
of the discussed results is the possibility of having dipole-
allowed ‘ESR’ transitions. This is illustrated in figure 8, in
which we show the ground state quartet levels of a triangle,
where we have also included the often present antisymmetric
(Dzyaloshinskii–Moriya) exchange D[Si × S j ], with the
Dzyaloshinskii vector D perpendicular to the plane of the
triangle (see e.g. the case of the V15 molecule [17]). This
interaction splits the ground state quartet into two doublets,
with |Sz = ↑, χ = +〉, |Sz = ↓, χ = −〉 and |Sz =
↑, χ = −〉, |Sz = ↓, χ = +〉. In ordinary ESR a magnetic
component of ac field causes transitions with �Sz = ±1
(thin blue arrows in figure 8(a)). However, if we put such a
triangle into the point of a resonator where the ac magnetic
field is zero but the electric field is maximum, there will be
dipole-allowed transitions between the states with the same Sz ,

but with opposite chiralities (thick red arrows in figure 8(a)).
Interestingly, in an external electric field these transitions
coincide (figure 8(b)).

The estimates show [1] that the intensities of these
‘electric’ transitions should be in general comparable to those
of the usual ESR. Such experiments would probably be the
most direct test of the obtained results. The best objects
could probably be some magnetic molecules with triangles of
transition metal ions, such as V15 (for which all the parameters
are known [17], and which even exist as single crystals).

5. Other possible effects

In conclusion I will briefly discuss some other possible
consequences of the results presented above. The first is the
possible anomalies in some other properties, e.g. the transport
properties of such systems. One related effect is now well
known and widely studied experimentally, namely the intrinsic
(or Berry-phase) mechanism of the anomalous Hall effect
in magnetic systems [18]. It is known to exist in systems
with noncoplanar magnetic structures and with nonzero scalar
spin chirality. However, corresponding studies were done on
metallic systems, whereas we dealt above with strong Mott
insulators. What the corresponding effects will be in this case
is as yet unclear.

A related problem is the possibility of having time-
reversal-broken states in high-Tc cuprates due to the formation
of spontaneous orbital currents [19]. Again, one sees definite
parallels with the physics discussed above (spontaneous
currents on triangles, current as a primary order parameter),
and again the treatment of [19] concerns metallic systems.
Thus the question arises: what is the relation of our current
states in insulators [1] and corresponding states in metals? The
theoretical problem is how the results presented above would
change if we slowly dope our frustrated Mott insulators. This
question is now under investigation.

Yet another interesting possibility, a spin-off of the
discussed physics, was suggested in recent works [16, 8]. The
authors considered the possibility of using double degenerate
chirality, described by pseudospin T = 1

2 , as a qubit instead
of an ordinary spin 1

2 . From the results presented above we
now know what corresponding states mean physically and
how to control them: the states with |χ = ±〉 are magnetic,
with nonzero orbital moment Lz , which can be addressed by
a magnetic field, and an electric field can cause transitions
between them. Moreover, we can think here not only of a
binary but of a ‘quaternary’ logic, four relevant states being
|S = ± 1

2 , χ = ±〉. This is as yet only a theoretical suggestion,
but it seems that it can be implemented in practice.

6. Conclusions

Summarizing, I want to repeat that, as we have seen, there may
exist unexpected and quite nontrivial charge effects in strong
Mott insulators—systems which were always thought to be
electrically ‘dead’ (at least when undoped). We have shown
that in case of geometric frustrations there may appear states
with spontaneous electric currents, or, for other spin textures,
there may occur a spontaneous charge redistribution, with
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the formation of electric dipole moments and eventually even
ferroelectricity. This is a novel, purely electronic mechanism
of multiferroic behaviour. There are also many dynamic
consequences of the proposed physics, such as the contribution
of magnetic excitations not only to the magnetic but also to
the electric response of the system, or a possibility of dipole-
allowed ESR transitions (‘electric ESR’).

In many of these effects, an important role is played by the
scalar spin chirality—the notion often invoked previously in
different contexts, but the physical meaning of which remained
somewhat obscure. We now know that nonzero chirality on
a triangle means that there is a real electric orbital current,
and corresponding orbital moment, on such a triangle. This
shows that one can address and control such states by external
magnetic and electric fields. This in principle can open the
possibility of using chirality as a qubit instead of spin, or
even create four-state logic. But probably most important is
a conceptual realization that there may be very interesting and
quite nontrivial charge effects in good strong Mott insulators.
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